Materials and Devices for Low-Cost Gas <u>and Bioelectronic</u> Sensors

Bryan W. Boudouris Davidson School of Chemical Engineering and Department of Chemistry Purdue University

2022 Fall P2SAC Conference General Safety Session

Thursday, December 15, 2022

Email: boudouris@purdue.edu; Twitter: @Boudouris_Group

The Focus of Our Work is on Performance and Price

Mass Spectrometry

Gas Chromatography

MEMS Offer Low-Cost, Low-Energy Solutions

Ahmad Asri, M. I.; et al. IEEE Sens. J. 2021, 21, 18381–18397.

Simple Testing Chamber with Multiple Resonators on a Board

Hodul, J. N.; et al. ACS Appl. Nanomaterials **2020**, 3,10389–10398.

Sorption-based Detection Yields Common Sensing Signals

Time

CO₂ Sensor Responds Quickly under a Range of Conditions

Siefker, Z.A.; Hodul, J.N.; et. al. Sci. Rep. 2021, 11, 13237.

Selective Towards CO₂ Relative to Common Distractants

- The distractant gases (i.e., interfering analytes) spanned broad chemical composition and are potentially present in current practical Indoor Air Quality (IAQ) monitoring scenarios.
- <u>The distractant gases are at significantly higher concentrations than what would realistically</u> <u>be present when performing real indoor monitoring tests.</u>

Siefker, Z.A.; Hodul, J.N.; et. al. Sci. Rep. 2021, 11, 13237.

Integrated Sensors and the Final, Compact Product

Testing at the Center for High Performance Buildings

BUILDING TECHNOLOGY & Systems

Indoor Air Quality Testing Room

Prototype Sensor Works as Well as COTS Sensor

Different Chemistry Detects Flammable Refrigerants

- This detection required the simple printing of a polyaniline (PANI) ink to the top of the mass resonators.
- The customers were interested in detecting at higher concentrations (i.e., near the LFL of the refrigerant gases) based on safety standards.

PdNS are Nanostructured and have High Surface Area

TEM Images of Pd Nanoparticle Sheets

- Chemistry involves simple Pd precursor materials and common ligands that are reacted at 80 °C to yield Pd nanosheets (PdNS), which are suspending in hexanes for printing.
- < 1 µg of PdNS (i.e., < \$0.01 per precursor materials) is used per device.

Pd Nanosheets (PdNS) Are Great Hydrogen Sensors

• The BET surface area is somewhat low (i.e., $\sim 50 \text{ m}^2 \text{ g}^{-1}$).

• We are looking to increase the surface area to increase the performance to an even greater degree.

These Sensors are <u>Not</u> Flow Monitors

- Currently finalizing calibration curves across a range of hydrogen sensing concentration with and without humidity.
- Ensuring that the sensors do not respond to distractant gases.

Printing Polymers on Contact Lenses for Advanced Biosensors

Printing Polymers on Contact Lenses for Advanced Biosensors

Devices Perform Better than the State-of-the-Art

Dark-adapted 10.0

Our Device

ERG Jet

DTL Fiber

Our Device

ERG Jet

200

-200

-400

200

Amplitude (µV)

30 60 90 120

Time (ms) Light-adapted 3.0 Flicker

Amplitude (µV)

Our Device

ERG Jet

60 90 120

Time (ms)

60

-

DTL Fiber

Our Device

ERG Jet

DTL Fiber

Kim, K.; et al. Nature Communications 2021, 12, 1544.

Glaucoma is the Leading Cause of Irreversible Blindness

Addition of a Polydopamine (PDA) Layer Works Well

IOP Measurements Work Well in Animals and Humans

Consistent in Porcine Eyes

Comfortable to Wear in Sitting and Sleeping Positions

Works Well in Dogs with Glaucoma

Performance on Par with Gold Standards

Zhang, J.; et al. Nature Communications 2022, 13, 2784.

Acknowledgements

Boudouris Research Group

- Lizbeth Rostro (Dow); Aditya Baradwaj (Intel); Sanjoy Mukherjee (University of California, Santa Barbara); Seung Hyun Sung (LG); Varad Agarkar (Louisiana State University) Ned Tomlinson (Bostik); Martha Hay (Intel); Jaeyub Chung (University of Minnesota); Daniel Wilcox
- Ryan Mulvenna (Dow); Darby Hoss (Intel); Jennifer Laster (Intel); Teng Chi (University of Notre Dame); Xikang Zhao (Chinese National Petroleum Corporation); Teng Chi (University of Notre Dame)

Thank You To our Sponsors

- **Collaborators**
- Jeff Rhoads (ME Purdue)
- Hari Subramani (Chevron) •

- Jim Braun
- George Chiu
- David Corti
- Letian Dou
- Hecobian
- Jianguo Mei
- **Brett Savoie**

DEVCOM

CHANGING WHAT'S POSSIBLE

Purdue Process Safety & Assurance Center

